Statistical functions in

EXCEL

Sum of numbers $s = x_1 + x_2 + \dots + x_n$

$$SUM(x_1, x_2, ..., x_n)$$

 $SUM(x_1:x_n)$

Average of numbers $m = (x_1 + x_2 + \dots + x_n) / n$

AVERAGE
$$(x_1, x_2, ..., x_n)$$

AVERAGE $(x_1 : x_n)$

Minimum value of numbers $x_1, x_2, ..., x_n$

MIN
$$(x_1, x_2, ..., x_n)$$

 $MIN (x_1 : x_n)$

Maximum value of numbers x_1, x_2, \dots, x_n

MAX
$$(x_1, x_2, ..., x_n)$$

 $\mathsf{MAX}\left(x_{1}:x_{n}\right)$

Number of cells with numerical values

COUNT
$$(val_1, val_2, ..., val_n)$$
 COUNT $(val_1: val_n)$

Number of cells with character (text) data type

COUNTA
$$(val_1, val_2, ..., val_n)$$
 COUNTA $(val_1 : val_n)$

Number of cells with blank cells

```
COUNTBLANK (val_1, val_2, ..., val_n) COUNTBLANK (val_1 : val_n, 7) COUNTBLANK (val_1 : val_n, \text{"white"})
```

Number of cells with data which fullfill a certain condition, into a domain)

COUNTIF $(val_1, val_2, ..., val_n)$ COUNTIF $(val_1 : val_n, "<5")$

Median of numerical series

MEDIAN (
$$val_1$$
, val_2 , ..., val_n)

MEDIAN (val_1 : val_n)

Mode of numeric series

MODE (
$$val_1$$
, val_2 , ..., val_n)

MODE $(val_1 : val_n)$

Skewness (simmetry indicator) of numeric series

SKEW (
$$val_1$$
, val_2 , ..., val_n)

SKEW (val_1 : val_n)

kurtosiss (measure of the "peakedness") of numeric series

KURT (
$$val_1$$
, val_2 , ..., val_n)

KURT $(val_1 : val_n)$

Estimated standard deviation based on a sample

STDEV
$$(val_1, val_2, ..., val_n)$$
 STDEV $(val_1 : val_n)$

Estimated standard deviation based on a sample, including numbers, text, and logical values

STDEVA
$$(val_1, val_2, ..., val_n)$$
 STDEVA $(val_1 : val_n)$

Calculated standard deviation based on entire population

STDEVP
$$(val_1, val_2, ..., val_n)$$
 STDEVP $(val_1 : val_n)$

Calculated standard deviation based on a sample, including numbers, text, and logical values

STDEVPA
$$(val_1, val_2, ..., val_n)$$
 STDEVPA $(val_1 : val_n)$

Returns the *confidence interval* for a population mean

CONFIDENCE (alpha, standard_dev, size)

Returns the *correlation coefficient* between two data sets

CORREL (domeniu₁, domeniu₂)

$$Correl(X,Y) = \frac{\sum (x-\overline{x})(y-\overline{y})}{\sqrt{\sum (x-\overline{x})^2 \sum (y-\overline{y})^2}}$$

Estimated variance based on a sample

VAR
$$(val_1, val_2, ..., val_n)$$

VAR
$$(val_1 : val_n)$$

$$\frac{\sum (x-\bar{x})^2}{(n-1)}$$

Estimated variance based on a sample, including numbers, text, and logical values

VARA (
$$val_1$$
, val_2 , ..., val_n)

VARA (
$$val_1 : val_n$$
)

Calculated variance based on the entire population

VARP
$$(val_1, val_2, ..., val_n)$$

VARP $(val_1 : val_n)$

the *sum of squares of deviations*

DEVSQ (
$$val_1$$
, val_2 , ..., val_n)

DEVSQ $(val_1 : val_n)$

$$DEVSQ = \sum (x - \overline{x})^2$$

The covariance, the average of the products of paired deviations

$$Cov(X,Y) = \frac{\sum (x - \overline{x})(y - \overline{y})}{n}$$

the *frequency* distribution as a vertical array

FREQUENCY (domeniu, domeniu_valori(bins))

Standard Variance based on a sample

VAR.S ($val_1 : val_n$)

Covariance based on entire population

COVARIANCE (domeniu₁, domeniu₂)

COVARIANCE.S (domeniu₁, domeniu₂)

Percentila k in a numerical series

PERCENTILE (domeniu, k)

Cuartila quart in a numerical series

QUARTILE (domeniu, quart)

0 – minimum value

1 – 1st quartile (25th percentile)

2 – 2nd quartile (50th percentile)

3 – 3rd quartile (75th percentile)

4 – maximum value