Statistical functions in # **EXCEL** **Sum** of numbers $s = x_1 + x_2 + \dots + x_n$ $$SUM(x_1, x_2, ..., x_n)$$ $SUM(x_1:x_n)$ **Average** of numbers $m = (x_1 + x_2 + \dots + x_n) / n$ AVERAGE $$(x_1, x_2, ..., x_n)$$ AVERAGE $(x_1 : x_n)$ **Minimum value** of numbers $x_1, x_2, ..., x_n$ MIN $$(x_1, x_2, ..., x_n)$$ $MIN (x_1 : x_n)$ **Maximum value** of numbers x_1, x_2, \dots, x_n MAX $$(x_1, x_2, ..., x_n)$$ $\mathsf{MAX}\left(x_{1}:x_{n}\right)$ ### **Number of cells** with numerical values COUNT $$(val_1, val_2, ..., val_n)$$ COUNT $(val_1: val_n)$ Number of cells with character (text) data type COUNTA $$(val_1, val_2, ..., val_n)$$ COUNTA $(val_1 : val_n)$ **Number of cells** with blank cells ``` COUNTBLANK (val_1, val_2, ..., val_n) COUNTBLANK (val_1 : val_n, 7) COUNTBLANK (val_1 : val_n, \text{"white"}) ``` **Number of cells** with data which fullfill a certain condition, into a domain) COUNTIF $(val_1, val_2, ..., val_n)$ COUNTIF $(val_1 : val_n, "<5")$ #### *Median* of numerical series MEDIAN ($$val_1$$, val_2 , ..., val_n) MEDIAN (val_1 : val_n) **Mode** of numeric series MODE ($$val_1$$, val_2 , ..., val_n) MODE $(val_1 : val_n)$ Skewness (simmetry indicator) of numeric series SKEW ($$val_1$$, val_2 , ..., val_n) SKEW (val_1 : val_n) kurtosiss (measure of the "peakedness") of numeric series KURT ($$val_1$$, val_2 , ..., val_n) KURT $(val_1 : val_n)$ ### Estimated standard deviation based on a sample STDEV $$(val_1, val_2, ..., val_n)$$ STDEV $(val_1 : val_n)$ **Estimated standard deviation** based on a sample, including numbers, text, and logical values STDEVA $$(val_1, val_2, ..., val_n)$$ STDEVA $(val_1 : val_n)$ Calculated standard deviation based on entire population STDEVP $$(val_1, val_2, ..., val_n)$$ STDEVP $(val_1 : val_n)$ Calculated standard deviation based on a sample, including numbers, text, and logical values STDEVPA $$(val_1, val_2, ..., val_n)$$ STDEVPA $(val_1 : val_n)$ ### Returns the *confidence interval* for a population mean CONFIDENCE (alpha, standard_dev, size) Returns the *correlation coefficient* between two data sets CORREL (domeniu₁, domeniu₂) $$Correl(X,Y) = \frac{\sum (x-\overline{x})(y-\overline{y})}{\sqrt{\sum (x-\overline{x})^2 \sum (y-\overline{y})^2}}$$ Estimated variance based on a sample VAR $$(val_1, val_2, ..., val_n)$$ VAR $$(val_1 : val_n)$$ $$\frac{\sum (x-\bar{x})^2}{(n-1)}$$ **Estimated variance** based on a sample, including numbers, text, and logical values VARA ($$val_1$$, val_2 , ..., val_n) VARA ($$val_1 : val_n$$) ### Calculated variance based on the entire population VARP $$(val_1, val_2, ..., val_n)$$ VARP $(val_1 : val_n)$ ## the *sum of squares of deviations* DEVSQ ($$val_1$$, val_2 , ..., val_n) DEVSQ $(val_1 : val_n)$ $$DEVSQ = \sum (x - \overline{x})^2$$ The covariance, the average of the products of paired deviations $$Cov(X,Y) = \frac{\sum (x - \overline{x})(y - \overline{y})}{n}$$ the *frequency* distribution as a vertical array FREQUENCY (domeniu, domeniu_valori(bins)) **Standard Variance** based on a sample VAR.S ($val_1 : val_n$) **Covariance** based on entire population COVARIANCE (domeniu₁, domeniu₂) COVARIANCE.S (domeniu₁, domeniu₂) #### *Percentila k* in a numerical series PERCENTILE (domeniu, k) Cuartila quart in a numerical series QUARTILE (domeniu, quart) 0 – minimum value 1 – 1st quartile (25th percentile) 2 – 2nd quartile (50th percentile) 3 – 3rd quartile (75th percentile) 4 – maximum value